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Inclement weather forces stopovers and
prevents migratory progress for obligate
soaring migrants
Julie M. Mallon1* , Keith L. Bildstein2 and William F. Fagan1

Abstract

Background: Migrating birds experience weather conditions that change with time, which affect their decision to
stop or resume migration. Soaring migrants are especially sensitive to changing weather conditions because they
rely on the availability of environmental updrafts to subsidize flight. The timescale that local weather conditions
change over is on the order of hours, while stopovers are studied at the daily scale, creating a temporal mismatch.

Methods: We used GPS satellite tracking data from four migratory Turkey Vulture (Cathartes aura) populations,
paired with local weather data, to determine if the decision to stopover by migrating Turkey Vultures was in
response to changing local weather conditions. We analyzed 174 migrations of 34 individuals from 2006 to 2019
and identified 589 stopovers based on variance of first passage times. We also investigated if the extent of
movement activity correlated with average weather conditions experienced during a stopover, and report general
patterns of stopover use by Turkey Vultures between seasons and across populations.

Results: Stopover duration ranged from 2 h to more than 11 days, with 51 % of stopovers lasting < 24 h. Turkey
Vultures began stopovers immediately in response to changes in weather variables that did not favor thermal
soaring (e.g., increasing precipitation fraction and decreasing thermal updraft velocity) and their departure from
stopovers was associated with improvements in weather that favored thermal development. During stopovers,
proportion of activity was negatively associated with precipitation but was positively associated with temperature
and thermal updraft velocity.

Conclusions: The rapid response of migrating Turkey Vultures to changing weather conditions indicates weather-
avoidance is one of the major functions of their stopover use. During stopovers, however, the positive relationship
between proportion of movement activity and conditions that promote thermal development suggests not all
stopovers are used for weather-avoidance. Our results show that birds are capable of responding rapidly to their
environment; therefore, for studies interested in external drivers of weather-related stopovers, it is essential that
stopovers be identified at fine temporal scales.
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Background
As birds migrate, they pass through a variety of habitats
and experience variable environmental conditions. Local
weather conditions in these habitats change with time,
which influence the flight behavior of migrants, espe-
cially the likelihood of suspending and resuming active
migration [1, 2]. Passerines avoid departing stopovers
during precipitation [3] and are more likely to resume
active migration during low wind speeds and decreasing
surface pressure [4]. Migratory raptors also avoid mi-
grating during poor weather conditions; they are rarely
observed migrating during cold fronts but are observed
in peak numbers immediately following a passing cold
front [5, 6]. Similarly, the likelihood of terrestrial soaring
birds stopping over increases on days with cloud cover
and rain [7] and when thermal updraft strength is weak
(sensu [8]).
Soaring birds are especially sensitive to changing wea-

ther conditions because they rely on the availability of
environmental updrafts to subsidize flight. Although ter-
restrial birds can soar using orographic updrafts [9] or
turbulence [10] to subsidize flight, thermals [8] are the
most important type of updraft for most soaring mi-
grants because thermals are widely distributed across the
landscape [11], allow birds to reach altitudes necessary
for fast cross-country soaring, and allow for straight, effi-
cient flight paths [12]. Thermals (i.e., vortices of ascend-
ing hot air surrounded by descending cooler air) [11, 13]
are generated by differential heating of the earth’s sur-
face. Thermals are, therefore, an uncertain resource that
only form under appropriate weather conditions [9, 13].
Poor weather conditions slow or prevent the develop-
ment of updrafts, thereby forcing birds to switch to
energetically expensive flapping flight [14, 15] or
grounding them.
Despite recognizing the relationship between migra-

tory flight behavior and changing weather conditions,
stopover use by large, soaring birds has been understud-
ied. This is in part due to challenges around defining
what constitutes a stopover - rule selection varies de-
pending on the species ecology and desired behavior.
Some of the definitions of stopovers for raptors include:
≤ 150 km/day [16], < 100 km/day [17, 18], < 50 km/day
of directed flight [19], ≤ 25 km/day [20], > 24 h in an
area < 30 km in diameter [21], and spending more than
24 h in an area [22]. These definitions pose two prob-
lems. First, all of these definitions consider the durations
of stopovers to be ≥ 24 h, due in part to the assumption
that stopovers are used primarily to refuel. If we define
stopovers based on the movement behavior of individ-
uals, however, stopovers occur whenever individuals do
not engage in fast, directed flight but are otherwise ex-
pected to do so. Using this movement-based definition
of stopovers, the duration of stopovers may be much

shorter than 24 h as local weather conditions can change
rapidly and may only prevent birds from flying for short
periods of time (i.e., hours). Clearly, standardized mea-
sures that constitute what are and are not stopovers are
warranted.
Stopover behavior is ideal to study using Turkey Vul-

tures (Cathartes aura) because they are obligate soaring
migrants [23] and cannot sustain themselves aloft for
long periods using flapping flight [24]. Hence, Turkey
Vultures should be sensitive to changes in weather and
stop frequently to avoid poor weather conditions. Here
we investigate if stopovers used by Turkey Vultures are
linked to changes in weather conditions that are poor
for thermal soaring. To this end, we used satellite track-
ing data from four migratory Turkey Vulture popula-
tions, paired with local weather data. As a first step, we
identified stopovers using first passage time (FPT) [25].
We automated identification of stopovers by selecting
the radius and FPT threshold based on the structure of
the data to avoid under- and over-selection of stopovers.
We explored general patterns of stopover use by com-
paring the frequencies of stopover use between seasons
and across populations.
Next, we evaluated when Turkey Vultures began their

stopovers, relative to changing local weather conditions.
As obligate scavengers, Turkey Vultures have several be-
havioral and physiological adaptations to minimize ener-
getic costs [10, 26, 27]. We hypothesized that, to further
minimize energetic costs, Turkey Vultures should fly as
long as weather conditions allow for energy-efficient
soaring flight and would stop as soon as weather condi-
tions deteriorate, rather than switch to flapping flight
[28, 29]. Last, we evaluated if average weather conditions
experienced by Turkey Vultures also affected their gen-
eral movement activity during stopovers.

Methods
Study species
We used GPS-GSM tracking data collected between
2006 and 2019 from four migratory populations that
represent three of the seven subspecies of Turkey Vul-
ture (C. aura aura, C. aura meridionalis, and C. aura
ruficollis). These populations range across most of the
species’ distribution – from Canada to southern South
America (Supplemental Fig. 1). Tracking data were pro-
vided by Hawk Mountain Sanctuary (Pennsylvania, USA)
and accessed via Movebank [30].

Weather predictors
We accessed weather data using Movebank Env-data an-
notation [31]. We selected weather variables that were
known to either be important for thermal soaring and
orographic soaring or were related to inclement weather
(Supplemental Table 1). To focus on the behavioral
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response of Turkey Vultures to changing weather condi-
tions, we excluded any static variables (e.g. NDVI,
landcover).

Stopover classification
We used only migrations with regularly collected data
(i.e., mean data interval < 3 h). We annotated migrations
from continuous tracks using first passage time (FPT; R
package adehabitatLT) [32] and manually reviewed each
migration for precision of start and end dates. FPT mea-
sures the time it takes an individual to leave a circle of a
given radius, which informs about an individual’s behav-
ioral state. Short FPTs indicate straight, fast movements
such as commuting between habitats [33] or migration
[34]. Long FPTs indicate localized movements such as
foraging [25, 33, 35], residency [34], or resting [35].
For the purposes of annotating stopover locations, we

linearly interpolated any spatiotemporal gaps within the
movement trajectories to get hourly fixes. To find which
days potentially included stopovers using FPT, we first
selected the radius that maximized log-variance of FPT
(between 2500 and 6000 m) for each migration. We se-
lected this range of radii based on patterns of activity
and inactivity in our dataset, which accounted for differ-
ent movement speeds among populations and between
seasons.
We anticipated some stopovers may be quite short be-

cause Turkey Vultures are diurnal migrants. For ex-
ample, if weather fronts moved in during the late
afternoon (i.e., flight hours) and passed overnight (i.e.,
roosting hours) a Turkey Vulture may stopover, ceasing
flight before their normal roosting hours, but such a
stopover is likely to go undetected by normal estimates
[16–22]. Therefore, we chose to be highly conservative
with our selection of stopovers and identified the start
and end of stopovers at the hourly scale.
To find the start and end times of each stopover, we

used a threshold relative to the variance of the FPT for
each migration; this reduced under-selection of stop-
overs from tracks with high FPT variance and over-
selection of stopovers from tracks with low FPT vari-
ance. Stopovers selected from FPT were rejected if <
25 % of the data were during daylight hours or if the
duration was < 2 h. To find non-stationary stopovers
that were missed with this approach, we considered
groups of > 30 points within a 15 km buffer to be a
‘stopover’ (where the mean duration of 30 points in our
dataset is 41 ± 10 h). To improve the precision of the
start and end times of stopovers in our dataset, we re-
moved the first and last observations if those speeds
exceeded 95 % of all the speeds during the stopover. If
an individual ceased activity during normal roosting
hours (approx. 1700–0800 h), we considered 0800 the
following morning to be the start of the stopover.

Analysis
To determine if there was a difference in the frequency
of stopover use among populations or between seasons,
we used a linear mixed model. The response variable
was the total number of stopovers per migration, the
fixed effects were population, season, and the interaction
of population and season, and the random effect was in-
dividual id.
To determine if Turkey Vultures used stopovers in re-

sponse to changes in weather at the species level, we
plotted the average hourly changes for each weather
variable. As not all stopovers were expected to be in re-
sponse to weather, we sought to remove noise from the
dataset by first ranking stopovers by their proportion of
activity. Proportion of activity, or the proportion of day-
time hours where there was flight activity, was calculated
for non-roosting hours, which were determined by local
sunrise and sunset times. To ensure the movement ac-
tivity represented flight activity, rather than geolocation
errors, we defined activity as > 1 km/h. To avoid includ-
ing stopovers used for feeding, we excluded the most ac-
tive third of stopovers from our dataset (n = 189) for
these analyses. We subset each weather variable from
7 h before to 7 h after the start of each stopover. We se-
lected a 14 h window to avoid signals related to normal
diurnal patterns in weather, while also capturing the full
range of flight hours of a diurnal migrant. To facilitate
comparison across populations with different climates
and across years, we used the hourly change of each
weather parameter as our response variables. For each
hour, we calculated the rate of change across all stop-
overs. To account for uneven numbers of stopovers
among individuals, we averaged these hourly values to
the individual level. For each variable, we used a loess
smoother to visually inspect the average rate of change
over time relative to the start of stopovers. We then de-
termined if the start of stopovers lagged relative to the
minima and maxima for each weather variable. To deter-
mine if the decision to depart from stopovers lagged
relative to changing environmental conditions, we re-
peated this analysis for the end of stopovers. We report
the population-specific responses to changing weather
variables at the start and end of stopovers in the Supple-
mentary materials.
To compare movement behavior during stopovers, we

used proportion of activity as the response variable. To
evaluate the effect of mean weather conditions during a
stopover on movement behavior, we used a binomial
generalized linear mixed model (GLMM) to identify if
any weather variables were associated with daytime
movement during stopovers. Our response variable was
the proportion of active hours out of the number of day-
time hours during the stopover. We used only stopovers
with complete weather data (n = 460) and used the mean
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of each weather variable (Supplemental Table 1) during
the stopover as a predictor in our full model. We re-
moved any predictors with correlations > 0.6, retaining
the predictor that we expected to be the most ecologic-
ally relevant. We included individuals nested within
population as our random effect. All analyses were done
using R version 4.0.2 [36].

Results
Description of stopover use
We analyzed 174 migrations of 34 individuals from 2006
to 2019 and identified 589 stopovers. Frequency of stop-
over use varied among populations and between seasons
(Table 1). Regardless of season, the Central Canada
population used stopovers most frequently (β = 6.159,
SE = 0.967, t = 6.372; Supplemental materials). All popu-
lations except Western Canada used stopovers more fre-
quently during fall migration than during spring
migration (β = 1.938, SE = 1.000, t = 1.938; Supplemental
materials).

Movement behavior during stopovers varied from highly
sedentary to highly tortuous (Fig. 1). Total distances moved
during stops ranged from 0 to 601 km. Duration of stopovers
ranged from 2 h to more than 11 days. 51% of stopovers
(n= 300) were < 24 h in duration. 58% of stopovers (n=
342) started or ended on a day where birds migrated >
100 km. All stopovers > 24 h (n= 289) had at least one stop-
over day where the bird travelled a total distance < 100 km.
Of these, 90% (n= 260) had at least one stopover day where
the bird travelled a total distance < 25 km.

Onset of stopovers
Stopovers typically began in the midafternoon (Supple-
mental Fig. 2). At the species-level, the beginning of stop-
overs temporally matched the peak rate of change of

precipitation fraction (Fig. 2). Several weather variables
(Supplemental Table 1) had peak rates of change within
one to two hours of the start of stopovers, including
downward shortwave radiation, sensible heat flux, thermal
updraft velocity, and total atmospheric water (Fig. 2).

There was no predictable response to change in sur-
face pressure or orographic updraft velocity. Other wea-
ther variables showed no peak in the rate of change but
a gradual change over time, including boundary height,
temperature, and wind speed. Responses were similar
across all populations (Supplemental materials).

Departure from stopovers
Stopovers typically ended in the early morning (Supple-
mental Fig. 2). At the species-level, Turkey Vultures
showed a response to fewer weather variables when
departing stopovers and resuming migration (Fig. 3).
Stopover departures were delayed relative to the peak
rate of change of thermal updraft velocity but temporally
matched the peak rates of change for temperature and
boundary height. In contrast, the rate of change in
downward shortwave thermal radiation peaked more
than one hour after the end of stopovers.

Departure from stopovers also followed decreases in
the rate of change of precipitation fraction and sensible
heat flux. There was no predictable response to change
in orographic updraft velocity, total atmospheric water,
surface pressure, or wind speed. Responses were similar
across three of four populations; however, the Western
Canada population departed from stopovers during in-
creasing rates of precipitation (Supplemental Fig. 4c).

Movement behavior during stopovers
Movement behavior during stopovers was associated
with weather conditions that promoted thermal soaring

Table 1 Seasonal differences in stopover use among populations. We report the total, mean, and standard error of the number of
stopovers used by each population and during each migration season. As stopover use is expected to vary as a function of
migration distance, we report the mean and standard error of migration distance per stopover used

Season Population Individuals Total number of
migrations

Total number of
stopovers

Number of stopovers per
migration (mean ± se)

Migration distance (km,
mean ± se)

Spring Southwest USA 14 39 44 1.1 ± 0.2 2690 ± 163.6

Central Canada 6 19 128 6.7 ± 0.7 1409 ± 297.2

Western Canada 6 11 32 2.9 ± 0.4 1371 ± 220.3

Southern South
America

4 11 22 2.0 ± 0.5 1735 ± 232.3

Fall Southwest USA 14 45 102 2.3 ± 0.3 1996 ± 171.9

Central Canada 8 23 188 8.2 ± 0.9 960 ± 105.7

Western Canada 6 11 22 2.0 ± 0.6 2187 ± 283.9

Southern South
America

5 15 51 3.4 ± 0.7 1382 ± 212.8
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(Table 2). Proportion of activity during stopovers in-
creased with mean thermal updraft velocity and mean
temperature but decreased with mean precipitation frac-
tion (Table 2).

Discussion
We found that Turkey Vultures frequently stopped ac-
tively migrating to avoid flying during poor weather con-
ditions, adding to the growing literature recognizing
weather avoidance as an important driver of stopover
use by migrating birds [37–39]. Turkey Vultures ceased
directed flight quickly in response to high rates of
change in several weather variables and resumed migra-
tion when conditions improved. As obligate soaring
birds, vultures are highly sensitive to changing weather
conditions that affect the availability of updrafts. The
variables they responded to are broadly associated with

thermal updraft strength [40, 41], which is the most im-
portant type of updraft for these migratory populations
[9]. The lack of response to orographic updraft velocity
suggests that this was not an important updraft source
for these populations, which largely avoid areas of high
topographic relief along their migration routes.
Boundary layer, temperature, and thermal updraft vel-

ocity all follow a diurnal pattern [42] that may partly ex-
plain the close response to these variables by Turkey
Vultures. The most frequent time for take-off for vul-
tures to resume migration was in the morning. At early
hours, there is rapid change in variables such as
temperature and solar radiation, which lead to the devel-
opment of thermals. Likewise, the most frequent time
for the start of stopovers was in the afternoon when
there is a slow decline in thermal strength and an in-
crease in sensible heat flux [9]. The positive relationships
between these variables and active migration is

Fig. 1 A composite of four stopovers (red) ranked from most tortuous (A) to most sedentary (D). Active migration is shown in gray. For small
radii, more tortuous stopovers have lower first passage times and higher proportions of activity, while more sedentary stopovers have higher first
passage times and lower proportions of activity

Fig. 2 Weather conditions relative to the start of n = 395 stopovers (red line), averaged to individual birds (n = 34). The y-axis represents the
hourly change of the variable indicated in each plot’s title. The average hourly change in each weather variable is shown in blue and the 95 %
confidence interval around this estimate is shown in gray. Peaks of several variables (i.e., downward shortwave radiation, precipitation fraction,
sensible heat flux, and total atmospheric water) are within one hour of the start of stopover, indicating rapid response by Turkey Vultures to
deteriorating weather conditions. Several other variables are declining at the start of stopover, i.e., thermal updraft velocity, boundary height,
temperature, and wind speed
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consistent with the behaviors of other soaring birds. In-
creased temperatures are associated with departure from
staging sites by Bee-eaters Merops apiaster [43]. Bound-
ary layer height is associated with faster migration
speeds of Montagu’s Harriers Circus pygargus and
Honey Buzzards Pernis apivorus [20] and proportion of
time spent soaring by Lesser Black-backed Gulls Larus
fuscus [44]. Importantly, we found that the onset and
cessation of stopovers by Turkey Vultures are associated
with high rates of change in weather. The effect of the
magnitude of change of each weather variable on the
stopover behavior of vultures requires further study.
Increases in variables that do not fluctuate diurnally,

such as precipitation, can disrupt updrafts and slow pro-
gress for some soaring migrants [20]. However, the onset

and cessation of stopovers used by Turkey Vultures was
not associated with wind speed. This finding echoes re-
sults for Ospreys Pandion haliaetus, which are also soar-
ing migrants that frequently use stopovers: Ospreys’
decisions to switch between active migration and stopover
are not influenced by winds [45]. Another variable that we
did not detect a response by Turkey Vultures to was sur-
face air pressure. Although longer stopovers may have
been associated with changes in surface air pressure, the
time scale of our analyses was too fine to detect a response
to changes in surface air pressure [43].

Short stopovers
Identifying stopovers at the daily scale may underesti-
mate the duration of stopovers that are > 24 h. For
example, birds may actively migrate for several hours be-
fore stopping over and thereby exceed the distance
threshold. The following day would be identified as the
start of the stopover, several hours after the bird ceased
directed flight. Half of the stopovers we identified did
not meet the < 100 km and > 24 h criteria commonly
used by other studies [16–22]. Only 4 % of stopovers we
identified started and ended during normal roosting
hours (approx. 1700–0800 h), where the timing of move-
ment activity would match with the normal flight activ-
ity patterns of diurnal migrants [46]. Stopovers identified
at the daily scale, thus, would have incorrectly identified
the start and end times for 96 % of stopovers. As
revealed by our results, birds are capable of responding
rapidly to their environment; therefore, for studies

Fig. 3 Weather conditions relative to the end of n = 395 stopovers (red line), averaged to individual birds (n = 34). The y-axis represents the
hourly change of the variable indicated in each plot’s title. The average hourly change in each weather variable is shown in blue and the 95 %
confidence interval around this estimate is shown in gray. Peaks of boundary height and temperature are within one hour of the end of
stopover, and several other peaks are within three hours of the end of the stopover, indicating a response by Turkey Vultures to improving
weather conditions

Table 2 Coefficients of the top generalized mixed-effects
model (GLMM; binomial) using mean values of weather
variables to predict the proportion of activity during stopovers
(where a bird moved > 1 km per hour) by GPS-GSM tagged
Turkey Vultures (n = 460). Individual (n = 34) nested within
population (n = 4) was included as a random effect (both
random effects: SD = 0.079). Estimates reported here are of
unscaled predictors

Variable β SE z p-value

Intercept -1.7332 0.1082 -4.759 < 0.001

Precipitation Fraction -3.7785 0.1235 -2.348 0.0189

Thermal Updraft Velocity 9.2448 0.1050 2.231 0.0257

Temperature 2.9703 0.1224 3.306 < 0.001
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interested in external drivers of stopover use, it is essen-
tial that stopovers be identified at fine temporal scales.
As identification of stopovers at the daily scale re-

sults in underestimates of stopover use, other soaring
migrants may be shown to use short duration stop-
overs frequently. Several studies of migrating raptors
only report results on stopovers > 24 h in duration,
including: Swainson’s Hawks Buteo swainsoni [16],
Osprey [17, 18, 22], Black Kites Milvus migrans [19],
Montagu’s Harriers [20], Honey-buzzards [20, 21],
Grey-faced Buzzards Butastur indicus [21], and Egyp-
tian Vultures Neophron percnopterus [47, 48]. Given
that half of the stopovers identified in our study were
less than 24 h, a reanalysis of stopover use at finer
temporal scales is warranted.
Stopover use among migrants that forage en route is

likely to be underestimated using existing definitions of
stopovers. A migrant that is refueling may travel tens of
kilometers in a day searching for food and would exceed
these distance-based stopover thresholds even though
they are not engaged in directed migratory flight. Several
raptor species, including Montagu’s Harriers [49], Os-
preys [50] and Eleonora’s Falcons Falco eleonorae [51],
feed while migrating. Feeding en route results in lower
daily migration distances [45] and in slower, more tortu-
ous movements [51], but allows migrants to continue in
the direction of their goal.
We found several stopovers where vultures were slow

moving (see Fig. 1B) that suggest individuals were
searching for food en route. However, these same stop-
overs could be the result of Turkey Vultures that are ad-
verse to stopping, instead attempting to migrate while its
progress was slowed by weak updrafts. Although Turkey
Vultures are expected to complete most of their migra-
tions while fasting [52], the relationship between move-
ment activity during stopovers and weather conditions
that promote the development of thermals also suggests
not all stopovers are weather-related and some vultures
do stop to feed during migration. The rates that stop-
overs are used for refueling versus weather-avoidance re-
quires further study.

Conclusions
We sought to determine if stopover use by migrating
Turkey Vultures was associated with changes in local
weather conditions. We used a data-driven approach
to identify short-duration stopovers < 24 h, which are
used as frequently as stopovers > 24 h. The decision
for Turkey Vultures to stop and resume active migra-
tion was in direct response to changes in several wea-
ther variables associated with thermal soaring,
indicating that avoidance of poor weather conditions
is a major function of stopover use by Turkey Vul-
tures. Movement behavior during stopovers was

typically driven by local weather conditions, where
individuals moved more frequently during conditions
that promote thermal updraft development, possibly
in search of carrion. Whether or not such behavior
occurs in other soaring migrants awaits additional
study.
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FPT: First passage time; NDVI: Normalized difference vegetative index;
GLMM: Generalized linear mixed model
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Additional file 1: Supplemental Figure 1. Map of migrations by 34
individuals from four populations that represent three subspecies:
Southwest USA (orange; C. aura aura), Central Canada (purple; C. aura
meridionalis), Western Canada (dark green; C. aura meridionalis), and
Southern South America (light green; C. aura ruficollis). White
points indicate stopover locations (n = 589). Supplemental Figure 2.
Histogram plots of the hours of the starts and ends of stopovers.
Stopovers started most frequently around 1300–1500 h and ended most
frequently around 1100 h. Typical roosting times begin and end
approximately at 1700 and 0800 h, respectively. Due to some gaps in the
data, some stopovers appeared to end during normal roosting hours (i.e.,
before 0700 h or after 1700 h). Supplemental Figure 3. Average
weather conditions for each individual, relative to the start of identified
stopovers (red line), by population. The y-axis represents the hourly
change of the variable indicated in each plot’s title. Individuals in each
population: (a) Southwest USA n = 14, (b) Central Canada n = 9, (c) West-
ern Canada n = 6, and (d) Southern South America n = 5. Differences in
responses across populations may be explained by unequal sample sizes,
differing weather variable interactions associated with local climates, and
stopovers used for feeding. Supplemental Figure 4. Average weather
conditions for each individual, relative to the end of identified stopovers
(red line), by population. The y-axis represents the hourly change of the
variable indicated in each plot’s title. Individuals in each population: (a)
Southwest USA n = 14, (b) Central Canada n = 9, (c) Western Canada n =
6, (d) Southern South America n = 5. Differences in responses across pop-
ulations may be explained by unequal sample sizes, differing weather
variable interactions associated with local climates, and stopovers used
for feeding. Supplemental Table 1. Definitions of weather variables
used and the rationale for including these variables. For variables that
have units, units are provided in parentheses. Weather data were sourced
from European Centre for Medium-Range Weather Forecasts (ECMWF) or
Movebank. Supplemental Table 2. Linear mixed model summary of the
number of stops per migration by population and season. Model was fit
using lme4 package version 1.1.23. Supplemental Table 3. Linear mixed
model summary of the number of stops per migration by total migration
distance. Model was fit using lme4 package version 1.1.23.
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