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Abstract
Highly mobile predators can show strong numerical responses to pulsed resources, sometimes resulting in irruptions where 
large numbers of young invade landscapes at a continental scale. High production of young in irruption years may have a 
strong influence on the population dynamics unless immature survival is reduced compared to non-irruption years. This could 
occur if subordinate individuals (mainly immatures) are forced into suboptimal habitats due to density-dependent effects 
in irruption years. To test whether irruptive individuals had lower survival than non-irruptive ones, we combined necropsy 
results (N = 365) with telemetry (N = 185) from more than 20 years to record timing and causes of mortality in snowy owls 
(Bubo scandiacus), which irrupt into eastern North America during winter following high breeding output caused by lem-
ming peaks in the Arctic. Mortality was more than four times higher in irruption years than non-irruption years, but only 
for immatures, and occurred disproportionately in early winter for immatures, but not adults. Mortality was also higher in 
eastern North America, where owl abundance fluctuates considerably between years, compared to core winter regions of the 
Arctic and Prairies where populations are more stable. Most mortality was not due to starvation, but rather associated with 
human activity, especially vehicle collisions. We conclude that immature snowy owls that irrupt into eastern North America 
are limited by density-dependent factors, such as increased competition forcing individuals to occupy risky human-altered 
habitats. For highly mobile, irruptive animals, resource pulses may have a limited impact on population dynamics due to 
low subsequent survival of breeding output during the nonbreeding season.
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Introduction

Population dynamics of predators at high latitudes are often 
tied to pulsed resources (e.g. microtine rodents that fluctu-
ate on 3–5 year cycles) with a large number of offspring 
produced during prey peaks and low numbers or even none 
during crashes of prey (Elton 1942; Gilg et al. 2006; Ther-
rien et al. 2014a). However, reproductive boom-and-bust 
cycles of predators may be attenuated because their numeri-
cal response to high densities of prey can operate at a large 
spatial scale as individuals can move large distances to find 
alternative food (Lack 1968; Therrien et al. 2014b). Winter 
irruptions of northern latitude predators sometimes occur 
during years when poor food availability is widespread on 
their breeding ground, and these individuals are typically 
in poor body condition and have high mortality (e.g. lack-
of-food hypothesis; Cheveau et al. 2004). In other cases, 
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irruptions occur when a high reproductive output during a 
prey peak increases the pool of migrants in the population 
(mainly juveniles), which are in relatively good condition 
but are pushed farther south in winter (e.g. breeding-success 
hypothesis; Robillard et al. 2016; Curk et al. 2018). A key 
question is whether such species are affected by density-
dependent mortality on the wintering grounds during irrup-
tion years. If the highest quality wintering habitats become 
saturated or defended by the dominant sex- or age- class 
(Boxall 1979; Evans 1980), a lack-of-food in alternative 
habitats may cause a decrease in body condition and an 
increase in mortality during the winter season. The poten-
tial consequences of irruptive movements on demographic 
parameters are important for bridging the gap between indi-
vidual movements and predicting population dynamics in 
irruptive species.

As a species reaches higher population densities and 
lower-quality habitats are increasingly used due to satura-
tion in higher-quality habitats, decreased survival in low-
quality habitats can affect the overall population growth in 
a density-dependent manner (e.g. buffer effect; Brown 1969; 
Gill et al. 2001; Newton 2004). For example, American red-
starts (Setophaga ruticilla) wintering in low-quality scrub 
habitats in Jamaica lost body mass throughout the winter 
period and had lower annual survival compared to redstarts 
wintering in high-quality mangrove habitats (Marra and 
Holmes 2001). Sources of mortality for animals involve 
natural and anthropogenic risks and the interactions between 
them (Newton 1998). Individuals moving southwards from 
northern environments during irruptions will encounter a 
human-altered landscape with new risks that immatures may 
have not encountered previously (Sergio et al. 2004; Schaub 
et al. 2010; Grilo et al. 2014). Under the ‘doomed surplus’ 
hypothesis (Errington 1946), subordinate individuals (imma-
tures) may be forced out of saturated, high-quality habitats 
by dominant individuals (adults) and thus experience higher 
‘natural’ mortality due to reduced food availability (New-
ton 1998). If the suboptimal, low-quality habitats have been 
altered by human activity, mortality of immatures may be 
linked to human-related causes, such as collisions with vehi-
cles or electrocution.

The snowy owl (Bubo scandiacus) is an irruptive species 
exhibiting large winter fluctuations in population abundance, 
especially in eastern North America (Smith 1997; Robillard 
et al. 2016). Winter irruptions occur during peak lemming 
years in the Arctic when high numbers of young produced 
during the summer disperse and move farther south during 
the nonbreeding season, while dominant individuals (i.e. 
adults and immature females) usually remain closer to their 
breeding area in the Arctic (Kerlinger and Lein 1986; Doyle 
et al. 2017; Robillard et al. 2018). Specifically, the winter 
abundance in temperate North America is correlated with 
lemming abundance on the Arctic breeding grounds during 

the previous summer (Robillard et al. 2016), and more than 
80% of individuals observed in irruption years are immature 
(Smith 1997; Santonja et al. 2018). Immature raptors in their 
first year are inexperienced at hunting, eluding predators, 
and avoiding bad weather (Squires and Reynolds 1997; Ben-
netts et al. 1999; Roth et al. 2005). Thus, we anticipated 
that immature owls would have high mortality, especially in 
irruptive years, due to density-dependent effects, many of 
them becoming a ‘doomed surplus’.

We examined differences in survival and sources of 
mortality among sex and age classes in wintering snowy 
owls based on combined necropsy data from owls found 
dead (N = 365) and known or apparent mortality rate from 
telemetry-tracked snowy owls (N = 185). Our approach har-
nessed the advantage of the large sample size of necropsy 
birds with accuracy of data available from telemetry-tracked 
birds, which was unbiased by discoverability of carcasses. 
We predicted that immature birds, due to their inexperience 
and presumed subordinate social status, should have lower 
overwinter survival compared to adults. Irrespective of age 
or sex, owls maintain smaller home ranges on the Prairies (a 
region where the habitat is more homogeneous and presum-
ably offers a higher and more stable food supply; referred to 
as ‘optimal habitats’) than in eastern North America where 
they are more irruptive and nomadic, moving across hetero-
geneous habitats with greater human populations (referred 
to as ‘suboptimal habitats’) (McCabe et al. 2021). Thus, 
we predicted that adult birds wintering in the Arctic (e.g. a 
region which can also provide good habitat for owls in win-
ter) or the Prairies would have higher survival compared to 
adults wintering in regions with more heterogeneous habitats 
(e.g. eastern North America).

We predicted that if urbanized habitats are the low-
est quality for owls, and if the subordinate individuals are 
forced into these areas, then anthropogenic causes of mor-
tality (especially vehicle collisions) would be higher among 
immature than adult owls. Finally, if immature birds during 
irruption years are influenced by density-dependent factors 
resulting from the high abundance of owls on the wintering 
landscape (i.e. explained by the breeding-success hypoth-
esis; Robillard et al. 2016), we expected survival to be lower 
in irruption years than non-irruption years for immature 
birds, but not for adults. As snowy owls were recently listed 
as “vulnerable” (IUCN 2020), a greater understanding of the 
species’ demography is a priority.

Materials and methods

Study area and data collection

We studied wintering snowy owls in the USA and Canada 
from 2000 to 2020. We used geographic/habitat regions 
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defined by the North American Bird Conservation Initia-
tive (see Bird Studies Canada and NABCI 2014) to clas-
sify wintering populations. At the continental scale, owls 
were divided into two groups: Arctic, those that wintered 
in the Arctic Plains and Mountains, and temperate, those 
that wintered south of the Arctic Plains and Mountains. We 
further divided the temperate region into two groups based 
on human population density, which is higher in the east-
ern USA and Canada than on the Prairies (Bhaduri et al. 
2007). Thus, we defined the ‘Prairies’ region to include 
the Prairie Potholes, Prairie Hardwood Transition, Eastern 
Tallgrass, and Badlands and Prairies, whereas the ‘eastern 
North America’ region incorporated the Boreal Hardwood 
Transition, Boreal Softwood and Taiga Shields, Lower Great 
Lakes, Appalachian Mountains, New England/Mid-Atlantic 
Coast, and Atlantic Northern Forest.

We tracked snowy owls using wildlife telemetry trackers 
(~ 30 g satellite transmitters (N = 97): Microwave Telem-
etry Inc., MD, USA, North Star Science and Technology, 
VA, USA, and GeoTrack Inc., NC, USA; ~ 40 g GPS–GSM 
transmitters (N = 88): Cellular Tracking Technologies, NJ, 
USA), fitted with a backpack harness of tubular Teflon™ 
or Spectra™ (Steenhof et al. 2006). The complete tracking 
device weighed less than 3% of an individual owl’s total 
body mass. Birds were trapped in the Canadian Arctic dur-
ing the breeding season (June–July) and in southern Canada 
(i.e. Saskatchewan and Quebec) and northern USA (i.e. from 
North Dakota in the west to states along the Atlantic Coast) 
during the winter period (November–April). In the Arctic, 
only adult females were trapped using bow nets at nests, 
approximately one week after young hatched (Therrien 
et al. 2012). During the winter period, owls were trapped 
using live lure-animals in either bal-chatri traps or bow nets 
(Bloom et al. 2007). We used plumage characteristics and 
molt patterns to assess sex and age for each individual (Sei-
densticker et al. 2011; Solheim 2012), and classified imma-
tures as being < 12 months old and adults as ≥ 12 months. 
GSM transmitters recorded one GPS location (± 3 m) at 30- 
to 60-min intervals during the winter period and downloaded 
the data via the Global System for Mobile Communications 
networks whereas satellite transmitters relied on the ARGOS 
system and transmitted locations following fixed schedules 
(described in Therrien et al. 2014b; Heggøy et al. 2017).

Survival analysis

To estimate survival during the winter period, we recorded 
the number of days the individual appeared to be alive, start-
ing with the capture date, and proceeding until the end of 
the winter period. We defined the winter period using the 
earliest date of tagging, 24 November (day 0), as the start 
date, and the average initiation date of spring migration for 
snowy owls in North America (Brown et al. 2021), 10 April 

(day 138), as the end date, giving a 4.5 month-long period. 
Because we were interested specifically in the winter season, 
individuals that were alive by the end of the winter period 
were censored (Therneau and Grambsch 2013). If the trans-
mitter stopped transmitting (e.g. transmitter malfunction, 
battery failure, owl permanently outside of cell tower range) 
during the winter period, then the individual was censored 
on the last known date of transmission. We detected or con-
firmed mortality by as follows: (a) locating the carcass in 
the field whenever possible, and determining cause-specific 
mortality via necropsy reports, or (b) estimating date of mor-
tality from the transmitter activity sensor which can indicate 
death based on temperature and activity level. If owls were 
tracked for more than one winter, a new entry was made for 
each winter season an owl was alive.

Necropsy assessments of Snowy Owl carcasses 
from eastern North America

Carcasses reported to wildlife agencies across eastern North 
America between 2013 and 2020 were analyzed to com-
pare mortalities with telemetry-tracked owls. Necropsies of 
non-telemetry-tracked owls were performed by veterinar-
ians at the Faculté de médecine vétérinaire of the Université 
de Montréal and University of Pennsylvania’s New Bolton 
Center. All necropsies occurred within 48 h after the time of 
death, or a carcass was immediately frozen and the necropsy 
was conducted at a later date. The date of mortality is con-
sidered to be the date the carcass was found and the cause of 
death was determined by gross necropsy findings supported 
by histopathology, toxicology, radiography, and microbiol-
ogy findings. Only owls that died between 1 November and 
30 April were included in this analysis.

Statistical analyses

Statistical tests were conducted in R (R Core Team 
2018), with the Cox proportional hazard regression and 
Kaplan–Meier curve generated in the package ‘sur-
vival’ (Therneau 2020). We used the non-parametric 
Kaplan–Meier estimator (Kaplan and Meier 1958) to com-
pute overall winter survival curves and the proportion of 
individuals who survived until the end of the winter period 
(138 days). The Kaplan–Meier analysis allows the use of 
censored data as well as staggered entry of animals during 
the course of a study (Pollock et al. 1989). To examine the 
relationship between winter survival and categorical covari-
ates (i.e. age, sex, winter regions, irruptions), we built sepa-
rate Cox proportional hazards regression models (Therneau 
and Grambsch 2013). For each model, we used likelihood 
ratio tests (LRT) to determine the model’s overall statisti-
cal significance and the Wald test (z-value) to determine 
P-values for each covariate: (a) continental winter region 
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(Arctic or temperate), (b) temperate winter region (Prairies 
or eastern North America), (c) age (adults or immatures), (d) 
sex (males or females), and (e) irruption vs. non-irruption 
years in eastern North America.

Prior to running the irruption vs. non-irruption survival 
analysis, we first had to determine which years were con-
sidered irruptions. To determine years of winter irruptions 
in eastern North America, we used Christmas Bird Count 
(CBC) abundance data (National Audubon Society 2020) 
from 1999 to 2019 for states and provinces that are within 
the eastern North America Bird Conservation Regions 
described above (USA: Connecticut, Delaware, District 
of Columbia, Maine, Maryland, Massachusetts, Michigan, 
Minnesota, New Hampshire, New Jersey, New York, Ohio, 
Pennsylvania, Rhode Island, Vermont, Virginia, West Vir-
ginia, and Wisconsin; Canada: New Brunswick, Nova Sco-
tia, Ontario, Prince Edward Island, and Québec). CBC is 
a well-known citizen-science database that gathers annual 
1-day birding records between 14 December and 5 January 
across North America (Sauer and Link 2002; Dunn et al. 
2005) and has been previously used to assess snowy owl 
winter abundance (Robillard et al. 2016; Santonja et al. 
2018; Curk et al. 2018). We did not correct for observation 
effort because a previous study (Robillard et al. 2016) found 
no relationship between the number of snowy owls censused 
during the annual CBC and observation effort. Following 
Krebs et al. (2002), we defined peak years as those years in 
which the abundance is higher in one year than in the pre-
ceding or following year. Within the study period, six winter 
irruptions occurred in eastern North America (2001–2002, 
2005–2006, 2008–2009, 2011–2012, 2013–2014, and 
2017–2018; Fig. 1). All other years were categorized as 
non-irruption years. We tested for an interaction between 
sex and irruption and between age and irruption as we 
expected a lower survival of immatures in irruption years 

than in non-irruption years but not in adults according to the 
breeding-success hypothesis. We used separate χ2 tests to 
assess the relationship between causes of deaths of necrop-
sied owls across all winter months (1 Nov–30 Apr) for sex 
and age classes.

Results

Survival rates and hazard factors 
for telemetry‑tracked owls

In total, 185 snowy owls were affixed with transmitters 
between 2000 and 2020, 38 (21%) were identified as imma-
ture females, 38 (21%) as immature males, 76 (41%) as adult 
females, and 33 (18%) as adult males. Of these, 34 were 
captured and tagged in the Arctic (i.e. Nunavut and Yukon; 
all adult females) during the breeding season and the other 
151 were captured and tagged in temperate regions dur-
ing the nonbreeding season. During the winter period, 18 
(9.9%) of the 185 owls died. Of the 18 confirmed deaths, 
12 occurred in eastern North America (8 immatures and 4 
adults), 5 in the Prairies (2 immatures and 3 adults), and 1 
in the Arctic (1 adult). Known proximal causes of death of 
telemetry-tracked owls included automobile and plane col-
lisions, electrocution, disease or parasites, and death from 
inclement weather (Table 1).

For adult females, the winter survival estimate was 
slightly lower for those wintering in temperate regions (93%) 
than for those wintering in the Arctic (98%) but the differ-
ence was not significant (Table 2). For all owls wintering 
in temperate regions (sex and age classes pooled), winter 
survival estimate was significantly higher for those wintering 
on the Prairies (94%) than those wintering in eastern North 
America (81%; Fig. 2a; Table 2).

Fig. 1   Annual variation of 
snowy owl winter abundance at 
Christmas Bird Count sites in 
temperate eastern North Amer-
ica. Peak years (white circles) 
where abundance is higher in 
one year than in the preceding 
or following year (black circles) 
are classified as irruptions
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As predicted, immatures wintering in temperate regions 
(Prairies and eastern North America regions pooled) had a 
lower winter survival estimate (68%) than adults (95%) also 
wintering in temperate regions (Fig. 2b; Table 2). Immatures 

had a higher probability of mortality at the beginning of 
winter compared to the end, whereas mortality was low and 
constant over the winter for adults (Fig. 3). We found no 
significant differences in winter survival estimates between 
the sexes in temperate regions (Table 2).

Among owls wintering in eastern North America, sur-
vival was not affected by an interaction between ‘sex and 
irruption’ (Table 2), but we detected a strong interaction 
between ‘age and irruption’ (Table 2) so we examined 
the effect of irruption for age classes separately. Winter 
survival estimate of immatures tended to be lower dur-
ing irruption years (52%) than during non-irruption years 
(100%; χ2 = 3.74, df = 1, P = 0.06; Fig. 4). In contrast, winter 
survival estimate of adults was similar between irruption 
(100%) and non-irruption years (90%; χ2 = 0.71, df = 1, 
P = 0.39).

Causes of death for necropsied owls

Of the 365 owls turned in for necropsies in eastern USA 
and Canada from 2013 to 2020, 73 (20%) were identified 
as immature females, 102 (28%) as immature males, 72 
(20%) as adult females, 53 (15%) as adult males, 4 (1%) as 
unknown adults, 3 (1%) as unknown immatures, 14 (4%) as 
unknown females, 22 (6%) as unknown males, and 22 (6%) 
as unknown. Cause of death or injury was undetermined for 
33% of the owls that either were found dead or died shortly 
after being found. For necropsied owls, anthropogenic mor-
tality was almost two times greater than natural mortality 
(i.e. 41% to 24%, respectively). Of the known causes of 
death, the most common natural source was emaciation and 

Table 1   Causes of death of snowy owls wintering in the USA and 
Canada

Of the Telemetry-tracked owls between 2000 and 2020, one con-
firmed death occurred in the Arctic, and the other deaths occurred in 
temperate North America (eastern North America: N = 12; Prairies: 
N = 5). Necropsied owls were collected and analyzed in northeastern 
USA and Canada from 2013 to 2020. Proportions of the total samples 
of telemetry-tracked owls and necropsied owls in each category are in 
parentheses
a Owl died from hypothermia or was found dead after a winter storm

Cause of death Telemetry-
tracked owls
(N = 18)

Necropsied owls
(N = 365)

Natural 4 (22.2%) 87 (23.8%)
 Emaciated 0 59 (16.2%)
 Disease or parasites 1 (5.6%) 23 (6.3%)
 Inclement weathera 3 (16.7%) 2 (0.5%)
 Predation 0 3 (0.8%)

Anthropogenic 9 (50%) 151 (41.4%)
 Automobile collision 4 (22.2%) 64 (17.5%)
 Airplane collision 2 (11.1%) 31 (8.5%)
 Other collisions 1 (5.6%) 28 (7.7%)
 Electrocution 1 (5.6%) 12 (3.3%)
 Ingested poison or toxin 1 (5.6%) 3 (0.8%)
 Trapped in man-made structures 0 7 (1.9%)
 Gunshot 0 6 (1.6%)
 Unknown 5 (27.8%) 127 (34.8%)

Table 2   Results of the survival analyses based on the Cox model for winter regions, age, sex, and interactions between age and irruptions and 
sex and irruptions, of telemetry-tracked snowy owls in North America

a A positive sign means the hazard or risk of death is higher for subjects with higher values of that variable
b The hazard ratio is given for the second group in each of the model (i.e. encoded as numeric vector 2) relative to the first group (i.e. numeric 
vector 1 is reference level)
* Statistical significance at the P < 0.05 level

Model Regression 
coefficienta

Hazard ratiob 95% CI Wald z P value Test summary

Continental winter region (Arctic = 1 vs. 
temperate = 2)

1.232 3.427 0.399–29.43 1.123 0.262 N = 144, # of events = 6, df = 1, 
LRT = 1.6, P = 0.26

Temperate winter region (Prairies = 1 vs. 
eastern North America = 2)

1.165 3.205 1.213–8.465 2.350 0.019* N = 252, # of events = 17, df = 1, 
LRT = 5.6, P = 0.02*

Age (Immature = 1 vs. Adult = 2) -1.823 0.162 0.058–0.454 -3.459 0.001* N = 259, # of events = 17, df = 1, 
LRT = 12.1, P < 0.001*

Sex (Male = 1 vs. Female = 2) 0.340 1.405 0.534–3.692 0.689 0.491 N = 259, # of events = 17, df = 1, 
LRT = 0.5, P = 0.50

Irruption: Age (eastern North America 
owls only)

-0.794 0.452 0.232–0.880 -2.338 0.019* N = 93, # of events = 10, df = 1, 
LRT = 7.68, P = 0.006*

Irruption: Sex (eastern North America 
owls only)

-0.416 0.660 0.346–1.258 -1.264 0.206 N = 93, # of events = 10, df = 1, 
LRT = 1.81, P = 0.20
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the most common anthropogenic source was automobile col-
lisions (Table 1).

We found an association between sex (ages pooled) and 
the number of owls turned in for necropsy throughout the 
winter period (χ2 = 20.64, df = 5, P < 0.001; N = 336), with a 
greater number of reported deaths for males at the beginning 

of winter compared to the end (Fig. 5a). We also found an 
association between age (sexes pooled) and the number of 
owls turned in for necropsy throughout the winter period 
(χ2 = 49.05, df = 5, P < 0.001; N = 307), with a greater num-
ber of deaths reported for immatures owls at the beginning 
of winter compared to the end (Fig. 5b).

Fig. 2   Kaplan–Meier survival 
curves of snowy owls dur-
ing winter (24 November to 
10 April) in temperate North 
America. Survival is computed 
from telemetry-tracked snowy 
owls by (a) wintering region 
and (b) age. For each curve 
there is a 95% confidence inter-
val and tick marks are for cen-
sored observations (tag failure 
without apparent mortality)
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Discussion

As predicted, (1) survival was lower in immatures than 
adults; (2) survival was lower in birds wintering in subop-
timal habitats (irruptive range, i.e. eastern North America) 

than birds wintering in optimal habitats (core range, i.e. 
Prairies and Arctic); and (3) mortality was primarily due 
to human-related causes. However, in contrast to classic 
predator–prey cycles where predator fitness is high during 
the years of prey peak and declines during the prey crash 
(Brand and Keith 1979; O’Donoghue et al. 1998), the 
irruptive pattern of highly mobile owls apparently meant 
that a high proportion of the breeding output during prey 
peaks was ‘doomed’ to die during the subsequent non-
breeding season. Indeed, survival probability of immatures 
in our study decreased by almost 50% during irruptive 
years. Similarly, during southern irruptions of northern 
hawk owls (Surnia ulula), winter mortality was largely 
human-induced or linked to predation from great horned 
owls (Bubo virginianus), northern goshawks (Accipiter 
gentilis), and fishers (Pekania pennanti) (Duncan and 
Harris 1997; Dale 2017). Nonetheless, without knowing 
subsequent survival during spring migration and breed-
ing propensity it is impossible to know the exact effect of 
this high mortality on population dynamics. Due to their 
high mobility, many northern raptors move large distances 
to match breeding to peaks in small-mammal population 
cycles, sometimes doubling breeding output through a lin-
ear functional response to microtine rodents (Korpimäki 
and Norrdahl 1991; Korpimäki and Wiehn 1998). Similar 
irruptive movements occur in many northern bird species 
(e.g. winter finches, waxwings; Kennard 1976; Koenig and 
Knops 2001; Dunn 2019). Low survival of immatures dur-
ing irruptive years implies that the numerical response on 

Fig. 3   Monthly probability of mortality for telemetry-tracked snowy 
owls wintering in temperate North America. We excluded November 
(i.e. tracking period started on 24 November) due to few individu-
als in the study at that time, and we only included the first 10 days 
of April (i.e. tracking period ended on 10 April) when calculating 
monthly probability

Fig. 4   Kaplan–Meier sur-
vival curves of immature 
(< 12 months old) snowy owls 
during winter (24 November 
to 10 April) in eastern North 
America. Survival is computed 
from telemetry-tracked owls in 
irruption years (6 years) and 
non-irruption years (14 years). 
For each curve there is a 95% 
confidence interval and tick 
marks for censored observations 
(tag failure without apparent 
mortality)
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the breeding grounds likely has an attenuated demographic 
impact compared with predators with limited mobility in 
response to northern resource pulses (i.e. foxes, resident 
birds of prey such as tawny owls [Strix aluco] and Ural 
owls [Strix uralensis]; Korpimäki and Sulkava 1987; Roth 
2003; Karell et al. 2009).

Most of the owls in our study died from human-related 
causes. The ‘doomed surplus’ was originally conceived as 
individuals that could be harvested as they would otherwise 
die from natural, compensatory mechanisms (e.g. Boyce 
et al. 1999), and human-related causes of death are often not 
considered to be density-dependent (Newton 1998). How-
ever, if human-related causes of death are more prevalent in 
suboptimal habitats used by immatures, then this source of 
mortality could become density-dependent. Wintering owls 
died of many anthropogenic and natural causes, but colli-
sions with automobiles was the highest source of known 
mortality for both necropsied and telemetry-tracked owls. 
Interestingly, although carcasses might be expected to be 
disproportionately found near where humans are active, 
the rate of natural mortality was similar (22.3% vs. 23.8%) 
between necropsied carcasses and telemetry-tracked owls, 
implying that our estimates from carcasses are unlikely to be 
strongly biased. Similar to our findings, Kerlinger and Lein 
(1988) reported that the most common source of mortality 
for snowy owls wintering in Alberta, Canada were collisions 
(66%) and other anthropogenic mortalities (20%), compared 
to 14% natural mortality (i.e. starvation).

Snowy owls demonstrated the classic trend of lower 
survival in immatures than adults, with immature mortal-
ity declining through their first winter (Martin 1995; Mar-
tín et al. 2007). A number of raptor studies have reported 
annual survival estimates, including for snowy owls (Ther-
rien et al. 2012; Heggøy et al. 2017). However, few have 
assessed sex-, age-, region, or time-specific variation in 
survival at the seasonal level (Newton et al. 2016). Sur-
vival rates of telemetry-tracked owls differed according to 
age, but not sex, for owls wintering in temperate regions. 
Some studies provided age-specific survival analyses of 
telemetry-tracked raptors, albeit mainly for annual sur-
vival (Klaassen et al. 2014). For example, McIntyre et al. 
(2006) reported the risk of mortality for juvenile golden 
eagles (Aquila chrysaetos) was greatest during the first 
migration and early in their first winter, with starvation 
and dehydration, likely due to hunting inexperience, being 
the highest cause of mortality. In addition, other studies 
reported lower survival in immatures compared to adults 
for various raptor species (e.g. Bowman et al. 1995; Ben-
netts et al. 1999; Tenan et al. 2012). Age- and season-
specific survival estimates were calculated by Roth et al. 
(2005) for sharp-shinned hawks (Accipiter striatus) and 
Cooper’s hawks (A. cooperii), and adult survivorship was 
also greater for adults (75.4%) than immatures (9.4%) by 
the end of the winter period. The age-specific survival 
estimates combined with the lower survival rate in irrup-
tive than in non-irruptive years, may indicate a mechanism 

Fig. 5   Reported deaths of 
known (a) sex and (b) age 
classes of snowy owl carcasses 
(N = 365) turned in for necrop-
sies to veterinary facilities 
during winter in eastern North 
America from 2013–2020
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for population control for snowy owls and other highly 
dispersive, and irruptive species as detailed below.

The high mortality of immatures in early winter may be 
related to their inexperience as hunters, or inexperience in 
avoiding dangers in human-dominated areas. Their inex-
perience, coupled with a low body condition post-migra-
tion, may entice them to higher risk, suboptimal habitats. 
For example, airports are known to be attractive for many 
raptor species as they provide open, undeveloped land that 
often contain small-mammal populations (Baker and Brooks 
1981). However, raptor–aircraft collisions are frequent in 
North America and often lethal (Dolbeer et al. 2015). Such 
high-risk habitats in human-dominated areas, which also 
include overhead power lines, highways and roads, may 
not be recognized by inexperienced immature owls when 
they arrive on the wintering grounds. Therrien et al. (2017) 
reported age-related differences in habitat types used by 
snowy owls in eastern North America, and found that juve-
nile owls wintered in developed areas more than adults, sug-
gesting the potential for increased exposure to contaminants 
(Miller et al. 2015) and human disturbance. Interestingly, 
other studies of migratory birds have reported that mortal-
ity rates of immatures and adults do not differ much once 
immatures have survived a period of high risk immediately 
post-fledging such as the initial migration (e.g. Menu et al. 
2005; Grüebler et al. 2014; Zúñiga et al. 2017). Moreover, 
Curk et al. (2018) reported an improvement of body condi-
tion of immature snowy owls throughout the winter sea-
son (i.e. from 1 October to 1 April) in both irruptive and 
non-irruptive winter ranges. This suggests that, over time, 
immatures may be able to find and settle in areas with an 
abundant food supply or improve their foraging skills, which 
could allow individuals to maintain a positive energy bal-
ance and explain why monthly survival probability increases 
throughout the winter (Newton 2006).

Our study supports the idea that density-dependent, 
compensatory winter mortality of immatures may play an 
important role in regulating the population dynamics of 
snowy owls in North America. The high mortality in irrup-
tion years may be linked to the boom-and-bust breeding 
strategy of snowy owls that lay large clutches (e.g. 5–10 
eggs, x = 7.0 ± 2.1 eggs; Potapov and Sale 2012; Holt et al. 
2020) during years when the abundance of small mammals 
in the Arctic tundra is high (i.e. ‘boom’ years) (Robillard 
et al. 2016). This breeding strategy yields an abundance 
of immature owls at the end of the breeding season during 
peak years but apparently also leads to high rates of mor-
tality in their first winter due to density-dependent effects. 
In contrast, during years of low breeding output due to the 
lack of prey on the breeding grounds (i.e. non-irruptive 
years), the few young produced apparently survive better 
during the winter. In the end, these opposing mechanisms 
may even out the number of young that will eventually 

recruit in the population between ‘boom’ and ‘bust’ years. 
It is thus possible that the high production of young in 
‘boom’ years may not drive population growth in the long 
term due to a low recruitment of those young in subse-
quent years. A key point is whether anthropogenic mortal-
ity is entirely compensatory or has an additive component. 
If the latter, then the high anthropogenic mortality could 
be contributing to global declines as fewer birds recruit, 
diminishing the numerical response (Sinclair and Pech 
1996; Péron 2013). Tawny owls show a similar numerical 
response during the breeding season, albeit a resident owl 
with short natal dispersal, with high fecundity during vole 
peaks driven by new recruits breeding in those years, yet 
that fecundity has relatively little importance for overall 
tawny owl population dynamics compared with adult sur-
vival (Karell et al. 2009).

In conclusion, our findings caution against overestimating 
the role of ‘boom’ years on long-term population growth of 
species relying on pulsed resources. Indeed, production of 
young in ‘bust’ years may not be negligible on the popula-
tion level, because, even if fewer young are produced, they 
may be more likely to survive the winter period and even-
tually recruit. In an increasingly human-altered landscape, 
compensatory, density-dependent anthropogenic mortality 
appears to stabilize population fluctuations in snowy owls.
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