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The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne
sensors offer a window into these changes. Although substantial animal tracking data from the
Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new
Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized
terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public
data discovery, preserves fundamental baseline data for the future, and facilitates efficient,
collaborative data analysis. With AAMA-based case studies, we document climatic influences on the
migration phenology of eagles, geographic differences in the adaptive response of caribou
reproductive phenology to climate change, and species-specific changes in terrestrial mammal
movement rates in response to increasing temperature.

T
he Arctic and adjacent regions are ex-
periencing the most rapid climate and
environmental changes on Earth, caused
primarily by anthropogenic greenhouse
gas emissions (1). Notable trends include

warming winter temperatures, ice loss, and
earlier spring snowmelt. These changes pro-
foundly affect conditions experienced by ani-
mals, including food availability, interspecific

competition, predation, and increased human
disturbances (2). Impacts of climate change
on Arctic vertebrates include rapid poleward
range shifts (3, 4); phenological trophic mis-
matches (5); and changes in migration (6),
foraging, and predator–prey dynamics (7). Be-
cause rapid environmental change in the
Arctic challenges the ability of the region’s
fauna to adapt, a primary response will likely
occur through phenotypic plasticity in the pat-
terns, locations, and timing of theirmovements

(2). Documenting and understanding these
changes requires multidecadal, pan-Arctic data
at multiple trophic levels.
We demonstrate the ecological utility of the

Arctic Animal Movement Archive (AAMA), an
active, collaborative collection of animal track-
ing datasets (supplementarymaterials).Marine
ecology archives, such as IOOS-ATN, IMOS,
OBIS-SEAMAP, and RAATD (8), provide in-
sight regarding space use, movement, and
connectivity (9–11). Terrestrial animal move-
ment archives are rare and tend to have a
regional or taxonomic focus (12). AAMA is the
first Arctic-focused archive with both terres-
trial and marine data and is hosted on the
global Movebank database. The geographic
scope of the AAMA (Fig. 1) includes the Arctic,
Arctic marine, and subarctic “boreal forests/
taiga” regions defined elsewhere (13, 14) (see
also supplementary materials). Currently, the
archive contains more than 15,000,000 occur-
rences of 8000 individuals representing 86
species, from 1991 to the present (figs. S1 and
S2 and tables S1 to S4). Combining data from
multiple AAMA studies, we show evidence of
(i) climate drivers of golden eagle migration
phenology, (ii) climate adaptation of parturition
by caribou, and (iii) consequences of increased
temperature and precipitation onmovements of
mammalian predators and herbivores.
Behavioral flexibility enables migrants to

optimize energy expenditure during migra-
tion and adjust arrival at summering grounds
(15, 16). We used tracking data from 103 in-
dividuals during 1993 to 2017 [supplementary
materials (case study 1) and table S5] to examine
arrival timing to breeding grounds of northward-
migrating golden eagles (“summering”), model-
ing it with predictors for age, sex, summering
onset latitude, year, and the preceding winter’s
mean Pacific decadal oscillation index (PDO).
Mean summering date changed slowly over

25 years (−0.5 days/year). The long-term trend
differed among age classes, with adults arriv-
ing earliest, then subadults, and then juve-
niles, and it was influenced by winter climate
(PDO) (Fig. 2 and tables S8 and S9). Eagles
of all age classes began summering later at
northern latitudes (1.08 days/degree). The
significant interaction of year and previous
“warm-phase”PDO explains earlier summering
dates for subadults and juveniles, highlight-
ing their known responsiveness to environ-
mental conditions (16). These warm-phase
winters cause awarmer and drier climatewith
reduced snowpack and an earlier snow-free
date. Earlier adult arrival to summering grounds
should result from selection and competition
for territories, yet local climatic variables af-
fect eagle condition before, and energy ex-
penditure during, northward migration (16).
For subadults sampled after 2011, the direct
effect of PDO is significant (–8.27 days), whereas
the full subadult dataset does not show a
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significant effect of winter PDO (Fig. 2).
This period-related difference in inference of
climatic drivers highlights the importance of
compiling long-term,multigenerational observa-
tions. Given the importance of the winter PDO
and known impacts of global climate change,
golden eagles could face age-specific challenges
during migration and at their warming Arctic
summering grounds.
The timing of parturition is a key to the

demography of wildlife populations and can
be an adaptive response to climate shifts (17).
For manymammals, the period from late preg-
nancy through weaning has the highest en-
ergetic demands and thus is timed to occur
when vegetation productivity is highest (18).
Caribou occur in five different ecotypes (Fig. 3)
across boreal and Arctic North America and
are facing global declines (19). On the basis of
data from 917 individuals during 2000 to 2017
in northern Canada, we used characteristic pat-
terns of lowmovement during the calving sea-
son to estimate 1630 parturition dates in five
populations of barren-ground, northern and
southern boreal woodland, and northern
and southern mountain woodland caribou
[supplementary materials (case study 2) and
table S6].
We found differences in parturition timing

and trends among the five populations. The
southern and northern boreal populations calved
earliest, followed by northern and southern
mountain populations (table S10). Barren-ground
caribou calved later despite occupying a similar
latitudinal range as the northern boreal caribou
(Fig. 3). Most importantly, barren-ground and
northern woodland caribou, but not southern
woodland caribou, exhibited significant trends
toward earlier parturition [0.4 to 1.1 days/
year (table S10)]. This is the first continental-
scale retrospectiveevidenceofpotential adaptive
responses to climate trends by caribou.
Animals conserve energy bymodifying their

behavior in response to weather conditions,
with important implications for individual fit-
ness and species resilience under climate
change (20). We tested for effects of temper-
ature andprecipitation on seasonalmovement
rates (inmeters perminute) using records from
1720 individuals of two herbivore and three
predator species (black bear, grizzly bear, cari-
bou, moose, and wolf) during 1998 to 2019
[supplementary materials (case study 3) and
table S7]. We predicted that winter movement
rates would decline relative to summer, when
energetic costs of self-maintenance would be
highest. Rate would also decline within seasons,
during weather conditions that increase the
energetic cost of movement (e.g., snow that
increases energy requirements for movement
or higher ambient temperatures during the
summer that accelerate metabolism).
All species exhibited lower movement rates

during winter relative to summer (Fig. 4). As
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Fig. 1. Map of the AAMA boundary and data. Density of animal locations (number of observations per
~100 km2) at logarithmic scale characterizes data availability, not animal density or utilization.

Fig. 2. Changes in the onset date of golden eagles’ summering. Coefficient estimates (±95% confidence
intervals) reflecting age-specific changes in response to year, previous winter PDO, sex (reference: females),
latitude, interaction of year and PDO, and age class [reference: juveniles (tables S8 and S9)]. (Inset)
Time series of model-estimated summering. d.o.y., day of year.
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temperatures increased in summer, wolves
and black bears slowed their movement rates,
whereasmoose increased theirmovement rates.
Inwinter, only barren-ground caribou increased
movement rates as temperature increased. Snow
impeded wolves, boreal caribou, and moose,

whereas all species were generally insensitive
to summer precipitation. These patterns may
reflect asynchronous responses to climate
changewithin and across trophic levels. Climate-
driven variation in animal activity is likely
to affect species interactions, altering energy

expenditure, encounter rates, and foraging
success with demographic implications for
both predators and prey.
As we demonstrate, the AAMA provides a

solution to Arctic data collection and sharing
challenges. It serves as a critical baseline and
resource to identify early signals of local or
large-scale changes in animal distribution,
movement responses, and adaptive traits. Con-
tinued shifts in phenology in the Arctic pose
challenges to migratory species that encounter
changing seasonal fluctuations along migra-
tion routes and at Arctic summering and south-
ern wintering grounds (21). Key drivers of
population responses, such as migration, par-
turition, and foraging movement, are under-
going rapid changes, suggesting that climate
change is affecting animals in ways that will
shape the future of the Arctic.
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Fig. 3. Climate change adaptation of parturition times (PT) of caribou. (Top) PT by population.
(Bottom left) PT trends by population, including five barren-ground subpopulations. (Bottom right) PT
dates by elevation.

Fig. 4. Changes in species-specific movement
rates in response to daily maximum tempera-
ture, summer precipitation, and winter
snow–water equivalent (SWE). Odds ratios for
continuous covariates represent the positive
or negative change in movement rates per one
unit change in temperature or precipitation,
respectively. Ratios were identified as neutral if
credible intervals overlapped with 1.0.
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change responses across species. Such ecological ''big data'' can lead to a wider understanding of change.
that currently hosts more than 15 million location data points across 96 species and use it to show distinct climate 

 introduce an open-source data archiveet al.change, we need to integrate our understanding across species. Davidson 
tracking data in these regions to understand individual species' responses, but if we want to understand larger-scale
yet this region remains one of the most remote and difficult to study. Researchers have increasingly relied on animal 

Human activities are rapidly altering the natural world. Nowhere is this more evident, perhaps, than in the Arctic,
Ecological ''big data''
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