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Flying over the open sea is energetically costly for terrestrial birds. Despite this,
over-water journeys of many birds, sometimes hundreds of kilometres long,
are uncovered by bio-logging technology. To understand how these birds
afford their flights over the open sea, we investigated the role of atmospheric
conditions, specifically wind and uplift, in subsidizing over-water flight at a
global scale. We first established that ΔT, the temperature difference between
sea surface and air, is a meaningful proxy for uplift over water. Using this
proxy, we showed that the spatio-temporal patterns of sea-crossing in terres-
trial migratory birds are associated with favourable uplift conditions. We
then analysed route selection over the open sea for five facultative soaring
species, representative of all major migratory flyways. The birds maximized
wind support when selecting their sea-crossing routes and selected greater
uplift when suitable wind support was available. They also preferred routes
with low long-term uncertainty in wind conditions. Our findings suggest
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that, in addition to wind, uplift may play a key role in the
energy seascape for bird migration that in turn determines
strategies and associated costs for birds crossing ecological
barriers such as the open sea.
publishing.org/journal/rspb
Proc.R.Soc.B

288:20211603
1. Introduction
Dynamic atmospheric conditions largely define the energetic
costs of flight for birds. Tail winds, for example, permit birds
to reduce air speed while maintaining the speed of travel,
helping them to save energy [1,2]. Likewise, rising air as a
consequence of warm air columns known as thermals and
orographic uplift created by the interplay between wind
and topography can push flying animals upwards and
reduce the energetic costs of remaining airborne [3–5]. How-
ever, the energy availability landscape [6] is interspersed with
patches where energetic subsidies in the atmosphere are
weak or absent, impeding efficient movement. Flight over
these areas becomes energetically costly, yet some animals
regularly engage in such seemingly risky flights, particularly
during migration [7,8]. How birds afford their flights across
migratory barriers remains an open and important question
for understanding the evolution of migratory routes and
sea-crossing strategies.

The open sea is considered a major migratory barrier for
all terrestrial species, and particularly for soaring birds [8,9].
This is rooted in observational studies of birds gathering in
large numbers at bottlenecks prior to setting out over even
relatively short over-water passages [8,10]. The existence of
such large aggregations, together with the technological diffi-
culty of observing birds over the open sea, led to a general
understanding that sea-crossing poses a formidable challenge
for birds that are unable to land or forage at sea [11]. Some
early studies looked beyond the role of geography alone
and suggested that the extent to which terrestrial birds aggre-
gate through overland flyways vary greatly across space and
time [12–14]. They further suggested that weather conditions
play an important role in terrestrial birds’ ability to embark
on, and sustain, over-water flight [15]. Advances in bio-
logging technology have since created a clearer picture of
sea-crossing behaviour in terrestrial birds.

Bio-logging has confirmed extremely long sea-crossings
in terrestrial birds [16,17]. It has provided evidence that the
prevalence and extent of this behaviour varies according to
flyway [8,11], season [18,19] and morphology [20]. We now
have ample evidence that, in most cases of sea-crossings,
atmospheric support, mostly in the form of wind support
(i.e. the length of the wind vector in a bird’s flight direction)
is an important facilitator [18,21–24].

An emerging hypothesis is that uplift also plays a role in
the energy seascape for soaring bird migration. Uplift can
reduce the energetic costs of remaining airborne. Addition-
ally, soaring birds can take advantage of strong uplift to
soar. Past bio-logging studies measured flight altitude in
soaring birds to provide indirect proof of thermal soaring be-
haviour at sea [25,26]. More recently, high-resolution GPS
tracking documented the circling flight pattern and vertical
aerial climb of migrating ospreys over the Mediterranean
Sea [27]. Duriez et al. [27] also confirmed the earlier sugges-
tions that ΔT, defined as the difference in temperature
between the sea surface and the air, can be used as a proxy
for uplift potential over water [28]. Positive ΔT values corre-
spond to upward moving air (warmer sea surface than air),
while negative values can be interpreted as sinking air,
termed subsidence. This proxy was consequently adopted
to quantify the energy seascapes that enable juvenile Euro-
pean honey buzzards to survive longer sea-crossings
compared to their earlier migrating adult conspecifics [19].
Yet, whether ΔT is a meaningful correlate of upward
moving air has not been quantitatively tested.

In this study, we investigate sea-crossing behaviour at the
global scale to assess the role of uplift and wind in shaping
the energy seascapes for terrestrial bird migration. To do this,
we use bio-logging data collected for five raptor species that
perform long sea-crossing journeys. These species differ in
size, morphology and stop-over strategies and their overall
dependence on soaring flight to cover long distances. However,
they are all facultative soaring migrants and are expected to
preferentially use soaring over flapping flight whenever poss-
ible, including flights over open water. This provides an
opportunity to investigate sea-crossing behaviour at all major
migratory flyways at spatio-temporal scales equivalent to
that of the publicly available global atmospheric information.
Using these data, we set out to establish whether ΔT is a
meaningful proxy for uplift potential over water, by testing
its relationship with convective velocity (w*) [29]. We further
hypothesize that (i) sea-crossings are associated with tempera-
ture gradients that are indicative of uplift in all flyways and
(ii) both wind and ΔT influence over-water route selection.
2. Methods
(a) Bio-logging dataset
We compiled a bio-logging dataset containing migratory trajec-
tories of birds that regularly perform sea-crossing during
autumn. We did not include spring migration in this study,
due to the limited amount of data for spring migration compared
to autumn. Our dataset was comprised five species: the Oriental
honey buzzard Pernis ptilorhynchus and the grey-faced buzzard
Butastur indicus in the East Asian flyways, the osprey Pandion
haliaetus and the peregrine falcon Falco peregrinus, in both the
African-Eurasian and the American flyways, and the Eleonora’s
falcon F. eleonorae in the African-Eurasian flyway. These birds
are all facultative soaring birds. Their dependence on uplift
varies, with the falcons and the osprey being less dependent
on uplift than the buzzards [11].

We focused only on sea-crossing behaviour during migration
to ensure a common flight purpose among all species and indi-
viduals in the analyses. We only included adults as they
actively select their route based on experience, unlike juveniles
that follow an innate direction of migration, probably without
established route selection criteria [30,31]. We limited our analy-
sis to sea-crossing trips longer than 30 km, which corresponded
to the spatial resolution of our environmental data (see Route
selection analysis below).
(b) ΔT and convective velocity
To determine whether ΔT is a meaningful measure of uplift vel-
ocity, we estimated the relationship between this variable and the
convective velocity scale, w* [29]. w* is estimated on the basis that
the buoyancy associated with surface heat flux produces uplift:

w� ¼ gz
(w0T0)þ 0:61T2m(w0q0)

u

� �� �1=3
,



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211603

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 S

ep
te

m
be

r 
20

21
 

where g [m s−2] is the gravitational acceleration, z [m above refer-
ence sea level] is the depth of the atmospheric boundary layer,
the term (w’T’ + 0.61 T2m(w’q’)) approximates the surface virtual
potential temperature flux, where (w’T’) [K m−2 s−1] is the surface
temperature flux and (w’q’) [gwater/kgair m−2 s−1] is the surface
water vapour flux and T2m [C] is the air temperature near the
sea surface. θ [K] is the virtual potential temperature at the
height of the boundary layer top (z) and was approximated
using the wet adiabatic lapse rate (typical for oceanic boundary
layers) as

u ¼ T2mþ 273:15þ 0:006z:

Weused data from the ERA-interim reanalysis database (spatial
and temporal resolution of 0.75 degrees and 3 h, respectively) pro-
vided by the European Center for Medium-Range Weather
Forecast (ECMWF; https://www.ecmwf.int). We accessed these
data through the EnvDATA service [32] onMovebank (www.move-
bank.org), to get the values for z, T2m,w’T’ andw’q’ (with some unit
conversions). Overall, we closely followed Bohrer et al. [33] to calcu-
late w*, but including the contribution of the surface water vapour
flux to the surface virtual potential temperature flux, and using
the wet adiabatic laps rate to estimate the potential temperature at
the height of the boundary layer top.

The variable w* represents uplift and can only be calculated
for positive heat fluxes. Hence, we calculated w* for all the sea-
crossing points in our bio-logging dataset where ΔTwas positive
and estimated the relationship between the two variables using a
generalized additive model.
(c) Spatio-temporal modelling of ΔT
To show the spatio-temporal variation in ΔT at the global scale,
we used 40 years of temperature data. We focused on five regions
where regular long-distance sea-crossing is performed by faculta-
tive soaring birds, namely South-east Asia, the Indian Ocean, the
Mozambique Channel, Europe and the Americas. We down-
loaded sea surface temperature and temperature at 2 m above
the sea for these regions for 1981–2020 from the ECMWF ERA-
interim reanalysis dataset (spatial and temporal resolution of
6 h and 0.75°, respectively). We chose to use this dataset instead
of the higher resolution ERA5, to reduce the time and memory
needed for the analysis. We spatially filtered the data to exclude
lakes, as we were only interested in the open seas and oceans. To
include a proxy for the time of day, we calculated the solar
elevation angle for each data point. We then created a categorical
variable with three levels, night, low sun elevation and high sun
elevation, corresponding to sun elevation angles below −6,
between −6 and 40 degrees, and over 40 degrees, respectively.

We loosely followed Nourani et al. [19] to construct energy
seascapes. In brief, we modelled ΔT as a function of latitude,
longitude, day of year and time of day using the generalized
additive mixed modelling (GAMM) approach. Five models
were constructed in total, one per region. We extracted the
timing and location of sea-crossings from our bio-logging data-
set. We did not have empirical data for migration over the
Indian Ocean and therefore consulted the relevant literature to
extract the spatio-temporal pattern of the Amur falcon’s Falco
amurensis sea-crossing over the region [34,35]. Each model
included two smoothers, one cyclic cubic regression splines
smoother for the day of the year and a spline on the sphere for
latitude and longitude. For both of these parameters, one
smoothing curve was estimated for each level of time of day.
Year was added as a random intercept in the models to control
for annual variations in ΔT. We also included a variance structure
in the models to account for the heteroscedasticity caused by
higher ΔT variance in higher latitudes. Models were fitted
using the mgcv package [36] in R v. 4.0.2 [37]. We used each
model to predict energy seascape maps for the autumn migration
season (August–November). We spatially interpolated the
prediction rasters to a 1 km resolution for visualization purposes.

(d) Route selection analysis
We investigated route selection by fitting a step selection func-
tion [38] to relate the probability of presence over the sea with
atmospheric conditions. Every two consecutive points along a
track were considered a step. Atmospheric conditions were com-
pared between the observed step and a set of alternative steps
that were available to the birds in space and time. The grey-
faced buzzard was excluded from this analysis because of the
low resolution of the satellite-tracking data.

We filtered our dataset to include only points over the open
sea. Trajectories that intersected land (e.g. islands) were broken
into sea-crossing segments. Segments shorter than 30 km, and
those that included fewer than three tracking points, were
removed. To ensure a uniform temporal resolution and to
reduce spatio-temporal auto-correlation, we re-sampled all data
to one-hourly intervals (with a tolerance of 15 min) using
R package Move [39].

We prepared a stratified dataset: along with each sea-crossing
segment, for each step, we generated 50 spatially alternative steps.
Based on the distribution of step lengths (gamma distribution)
and turning angles (von Mises distribution) estimated using
over-water tracking data, fitted separately for each species-
flyway combination. Diagnostics plots were used to assess the
fit of the distributions. All data were then annotated using the
ENV-data track annotation service [32] provided by Movebank.
Each point was annotated with u (eastward) and v (northward)
components of the wind, sea surface temperature and temperature
at 2 m above the sea, all provided by ECMWF ERA5 reanalysis
database (temporal and spatial resolution of 1 h and 0.25°, respect-
ively). We selected the bilinear and the nearest-neighbour methods
of interpolation for the wind and temperature data, respectively.
We then calculated wind support [40] and ΔT using the annotated
data. Additionally, to investigate whether the predictability of
atmospheric conditions affected the sea-crossing route choice, we
annotated each point with long-term variances (over 40 years;
1981–2020) for wind support and ΔT.

We checked the annotated dataset for multicollinearity and
only used variables that were not highly correlated (r < 0.6).
Prior to analysis, we centred and scaled the predictors to mean
zero and units of standard deviation (i.e. z-scores) to ensure
comparability among predictors.

Step selection functions were then estimated using the inte-
grated nested Laplace approximation (INLA) method using the
INLA package [41] in R v. 4.0.2 [37]. We constructed a multilevel
model with fixed effects for ΔT, wind support, long-term var-
iance of wind support and an interaction term for wind
support and ΔT. Species and individual IDs (nested within
species) were included as random effects on the slopes. Follow-
ing Muff et al. [42], we set N(0, 104) as the prior for fixed slope
parameters and penalized complexity priors PC(3, 0.05) to the
precisions of the random slopes. The model converged after
50 min on an Intel Core i7–8700 12 × 3.20 GHz processor
(running on 10 cores in parallel).
3. Results
We found a positive relationship between the convective vel-
ocity scale, w* and ΔT (figure 1; r2 (adj.) = 0.31; p < 0.05). The
sea-crossing data from all species showed overnight flights
(figure 1; electronic supplementary material, figure S4).
There was no clear difference between the pattern of corre-
lation between w* and ΔT in different times of the day or
for different species (figure 1).

https://www.ecmwf.int
https://www.ecmwf.int
http://www.movebank.org
http://www.movebank.org


T (°C)

w
* 

(m
 s

–1
)

0 2 4 6 8

1

2

3

4

5

time of day

daytime: high sun
daytime: low sun
night

species

Pernis ptilorhynchus
Pandion haliaetus
Butastur indicus
Falco peregrinus
Falco eleonorae

Figure 1. Relationship between ΔT and the convective velocity, w* (for all points with positive ΔT ). The sea-crossing bio-logging data ( pooled for all five species)
were annotated with values of ΔT and w*. The smooth curve shows cubic regression splines fitted to the data predicting w* as a function of ΔT (with the 95%
confidence interval). Colours and shapes represent different times of day and species, respectively. (Online version in colour.)

100 200 300
−2

0
2
4

day of year

South-East Asia

100 200 300
−2

0
2
4

day of year

The Americas

100 200 300
−2

0
2
4

day of year

Indian ocean

100 200 300
−2

0
2
4

day of year

Europe

100 200 300
−2

0
2
4

day of year

Mozambique channel

ΔTΔT ΔTΔT ΔT

−1 0 2 4

ΔT (°C)

map legend

30° N

60° N

oriental honey buzzard
grey-faced buzzard
amur falcon
Eleonora's falcon
peregrine falcon
osprey

sea−crossing period high sun elevation low sun elevation night

Figure 2. Energy seascapes for soaring bird migration in autumn. The map shows the energy seascapes for August–November derived from 40 years of temperature
data. Tracks correspond to sample migratory trajectories. All tracks are based on empirical data, except for the Amur falcon, which is based on the available literature
[35]. Subplots show the distribution of ΔT throughout the year in each region, for each time of day (based on summed effects from the GAMMs with 95% confidence
intervals). Green shaded areas in the subplots show the timing of sea-crossing in the species flying over the corresponding region. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211603

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 S

ep
te

m
be

r 
20

21
 

The spatio-temporal pattern of sea-crossing in the six terres-
trial bird species (the five species in our bio-logging dataset
plus theAmur falcon) correspondedwith positive uplift poten-
tial over the open sea (figure 2; see subplots forwithin-year and
within-day variations in each region; see electronic supplemen-
tary material, table S2 for detailed GAMM outputs). The
osprey was the only species flying over the open sea when
the sea surface was colder than the air (i.e. negative ΔT ). This
pattern occurred over both the Mediterranean and the Carib-
bean Seas (figure 2). The Eleonora’s falcons flying over the
Mozambique Channel also experienced relatively low and
sometimes negative ΔT (figure 2). However, over-water flight
in the absence of uplift did not set the two species apart from
the other species in route selection regarding ΔT.
We analysed over-water route selection in 112 sea-
crossing tracks of 65 individuals (electronic supplementary
material, table S1 and figure S3). We did not include the
long-term variance of ΔT in the model, as it was correlated
with the long-term variance of wind support (r = 0.61; p <
0.05). The most important variable determining over-water
route selection was wind support, with a positive effect.
The interaction between ΔT and wind support also showed
a positive, yet smaller, effect (figure 3). The variables ΔT
and the long-term variance of wind support had negative
impacts on route selection. The model results suggested
a greater preference for wind support in the Eleonora’s
falcon and a weaker preference in the osprey (electronic
supplementary material, figure S1).
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4. Discussion
We found that, in all flyways that we studied, facultative soar-
ing birds were more selective for wind support than uplift
when flying over the open sea. This confirms previous findings
that birds aim at maximizing wind support, probably to
reduce the time and energy required to complete their journeys
[18,21–24,43–45]. Our model also showed a positive effect of
the interaction between wind support and ΔT. This indicates
that when wind support is favourable, the birds also select
high values of ΔT to gain a better advantage of uplift (figure 4).

The selection of suitable wind support went beyond the
individuals’ instantaneous response to wind conditions. The
birds avoided areas with high long-term variability in wind
support when flying over water (figure 3). The 40-year con-
ditions that we considered here are beyond one individual’s
experiences, but point to population-level preferences, which
might be socially transmitted across generations to achieve effi-
cient movement [46,47]. Reducing uncertainty in the energetic
costs of migration in this way can be a mechanism for the
formation of efficient migratory routes within populations.

Contrary to our expectations, after accounting for the
other variables, higher ΔT values alone had a lower prob-
ability of being chosen on route selection. This suggests that
in the absence of suitable wind support, the birds did not
choose stronger uplifts to fuel their flights (figure 4). Still,
we show that uplift conditions over the sea were generally
favourable during the autumn migration season (figure 2)
as well as at the start of sea-crossing (electronic supplemen-
tary material, figure S4). We speculate that the birds may
avoid turbulent conditions by avoiding high ΔT. The map
showing mostly positive ΔT (electronic supplementary
material, figures S2 and S3) indicates that even when select-
ing low values of ΔT, the birds were still likely to
experience some amount of uplift regardless and would not
prefer higher uplift for forgoing better wind support.

The sea surface tends to be warmer than the air in
autumn, creating upward heat flux. This is reflected in our
global energy seascape map (figure 2). The mostly positive
values of ΔT on this map indicate that the spatio-temporal pat-
terns of sea-crossing in autumn is associated with favourable
uplift conditions, supporting our first hypothesis. Moreover,
the range and mean of ΔT values were similar between the
observed and alternative steps in our step selection function
estimation (electronic supplementary material, figure S2).
The birds thus faced more variability in wind conditions
than in uplift, which can further explain why wind support
was the most important criterion for route selection (figure 3).
We further showed that ΔT has a relatively low seasonal
variation, except in Europe (subplots in figure 2). As a result,
birds flying along these flyways in spring could potentially
benefit from uplift. However, we cannot make generalizations
about sea-crossing patterns in spring based on ΔT alone. As
our route selection analysis showed, wind support plays a
more important role in over-water flight than uplift. Even in
similar uplift conditions between the two seasons, variations
in wind support can lead to loop migration patterns [48,49]
and even avoidance of sea-crossing in one season [18]. More-
over, species may differ in their energy- or time-saving
strategies between seasons. Uncovering the role of atmos-
pheric subsidies in shaping sea-crossing patterns in spring
requires multi-species bio-logging data, which were not avail-
able to our study.

Evidence for a soaring flight over the sea has accumulated
for at least a decade. Yet, many studies overlook uplift potential
when explaining sea-crossing behaviour. This could be due
to the presumption that thermals do not form over the sea,
as well as a lack of a reliable and easy to compute proxy for
uplift over water. Studies that try to investigate uplift do so
by using a variety of proxies, including air temperature [50],
air temperature gradient [18], vertical air velocity [18], bound-
ary layer height [51] and solar irradiance [52], which makes
interpretation of the results and comparisons among studies
difficult. ΔT is shown, by direct observations [53] and bio-
logging technology [27], to be related to soaring flight. Our
results confirming the correlation of ΔT with w*, a widely
accepted measure of uplift by the movement ecology commu-
nity (so far mostly used to estimate uplift over land [33]),
further point to the potential of this proxy as a measure of
uplift over the open sea. Duriez et al. [27] showed that ospreys
predictably engaged in thermal soaring over theMediterranean
Sea when ΔT values were higher than 3°C. Although we pro-
vide a range of w* values (m s−1) for each value of ΔT in our
data, the resolution of our data did not allow us to directly
investigate whether and in what ΔT conditions the birds
engaged in soaring flight. In fact, there remains a strong need
for quantifying the amount of energy, or the realized uplift,
that a bird can gain from ΔT. Theoretical and high-resolution
multi-sensor bio-logging studies can investigate this for birds
with differentmorphological characteristics andunder different
wind conditions.

Although we show that it is possible to estimate w* using
publicly available weather data, it is not an ideal proxy for
measuring uplift under all circumstances over the open sea.
First, w* can only be estimated for upward moving air. This
means that there will be no values estimated for subsidence.
ΔT does not have this limit, as it provides positive values for
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uplift and negative values for subsidence. Second, calculating
w* requires at least a basic knowledge of meteorological
concepts and units. Different reanalysis datasets provide
different variables for potential and water vapour fluxes,
making our method of calculating w* difficult to adapt for
other studies. This is while ΔT can be calculated only using
two simple variables, sea surface and air temperature, and
yields the same result whether temperature data are obtained
in units of kelvin or Celsius. It is therefore a more approach-
able and possibly reliable measure than w*. Lastly, although it
is ideal to be able to calculate uplift in meters per second, w*
has not been ground-truthed. We cannot be sure whether our
estimated w* values are a precise representation of the
strength of uplift over water. Although ΔT does not provide
realized uplift, it is an intuitively interpretable measure of
uplift potential.

Uplift reduces the energetic costs of remaining airborne, for
both soaring and flapping flyers. We used facultative soaring
species as our model system. These species varied in morpho-
logical characteristics and soaring flight dependencies. Apart
from minor differences in responding to wind support between
ospreys and Eleonora’s falcons, we found no significant
species-specific variation in the impact of wind support and
uplift on sea-crossing behaviour (electronic supplementary
material, figure S1). This indicates that the patterns that we
found can be true for sea-crossing in other species as well.
Moreover, our study included all major bird migration flyways.
As a result, our findings can further shed light on the energy
seascapes other animals flying over these flyways would
encounter. For example, the relatively high uplift during the
night compared to daytime (figure 2) means less drag and
could lead to energetically cheaper flight in nocturnal migrants
over the Mediterranean Sea [54,55] and the Caribbean Sea
[56,57] (but see [58] for a suggestion that songbirds prefer
non-turbulent air for sea-crossing). Moreover, dragonflies [59]
and cuckoos (Cuculus spp.) [60] migrate within the same time
window as the Amur falcon over the Indian Ocean (figure 2),
perhaps taking advantage of the energetic subsidy that the
atmosphere provides.
5. Conclusion
The literature onmigratory behaviour is increasingly recogniz-
ing that atmospheric conditions can reduce the risks associated
with sea-crossing in terrestrial birds. Evidence of the role of
wind support as a facilitator of this behaviour formany species
is mounting. Yet, not much is known about the role of uplift.
Our findings confirm the role of wind support as the main
facilitator of over-water flight, but also provide evidence for
widespread uplift potential over the open sea, at least in
autumn. We provide quantitative evidence that ΔT is a mean-
ingful proxy for uplift over the open sea and encourage future
studies to take advantage of this proxy, not least because
widespread use of ΔT will make comparisons among studies
possible. Our findings suggest that the energetic costs
of sea-crossing for soaring birds could be at least partially
alleviated by overseas uplift. This may have important conse-
quences for shaping routes, timing and strategies of birds
crossing ecological barriers.
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